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This study introduces an inverse procedure for identifying the elastic modulus
(Young’s modulus) of interfacial tissue around a dental implant using neural
network (NN) and finite element analysis (FEA). An NN model is first trained
using displacement responses obtained using FEA models with given interface
properties. It is then used to identify the interface elastic modulus by feeding in
measured displacements of a dental implant–bone structure whose interface
elastic modulus is unknown. The results indicate that the identified elastic
modulus is sufficiently close to the original one. The developed NN-FEA inverse
procedure is concluded to be robust and efficient. It offers a new perspective and
means for the study of the living-bone properties around dental implants, as it can
be easily made in real-time.

Keywords: inverse analysis; neural network; finite element analysis; interfacial
tissue; dental implant; Young’s modulus

1. Introduction

A bone anchored titanium implant, also called an osseointegration implant [1,2], has been
successfully used to replace missing teeth. Under occlusal loading, the surrounding
conditions of an implant can significantly influence the state of osseointegration and
the adaptive bone remodelling processes [3]. During these processes, different material
properties of the dental implant–bone interfacial tissues determine different patterns of
biomechanical responses of the dental implant–bone structure. In addition, the stiffness
of the interfacial tissues determines the implant stability that greatly influences the
implant long-term survival. In clinical practice it is important to detect the varieties of
the implant surrounding conditions. However, specific methods to obtain an accurate
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and effective evaluation of the implant–bone interface property have not been
standardized before or after the implant replacement.

Several attempts have been described in literature to predict the properties of implant
surrounding bones with in vitro or in vivo studies. Methods reported include traditional
mechanical testing, nanoindentation, imaging procedures or ultrasonic techniques [4].
However, these methods neither allow non-destructive measurement of the elastic
constants nor do they allow assessment of its influence on the biomechanical behaviour
of the implant–bone interface in the clinical situation.

In the past, finite element analysis (FEA) has been used extensively in an effort to
predict the effects of stress on the dental implant–bone interface [5–9]. Different
biomechanical responses can be evaluated so long as the relevant different Young’s
moduli of the interface are inputted into the FEA models [10–13]. Also, it is able to
simulate and validate the influence of the Young’s modulus on displacement responses
in both implant and bone. Obviously, these responses must also encode information
about the Young’s moduli and hence it should be possible to decode this information
from the structural behaviour of dental implant bone by means of inverse procedures.

Neural network (NN) is commonly adopted as a very useful tool to solve inverse
problems related to non-destructive evaluation of material and structural systems [14].
Due to the unique computing features of NNs, NN techniques can be applied to model the
non-linear and complex relationship between the structural parameters and the dynamic
characteristics of complex structures. Several studies have been devoted to the application
of this technique to reconstruct material constitutive properties [15,16]. As reviewed by
Sumpter and Noid [17], implementation of the NN technique has greatly promoted
research in materials science and technology. Recently, Liu and coworkers [14,18–22] have
employed a progressive-learning NN procedure to characterize the material property
of functionally graded material from its dynamic displacement response. To the best
knowledge of the authors’ knowledge, no work has been done in the identification of
elastic constants of bone from dental implant–bone biomechanical responses using such
an inverse procedure.

It is also possible to use FEA to simulate clinical situations involving displacement
response of the dental implant–bone structure with different Young’s moduli of interface
during the osseointegration process. The objective of this study is to inversely identify the
Young’s modulus of dental implant–bone interface using a progressive NN procedure
from displacement responses of a dental implant–bone structure.

2. Material and methods

2.1. In vitro experimental set-up

Experiments are undertaken in a block of bovine rib of a mature specimen, obtained
commercially from a butcher, and severed as a model for the edentulous human mandible.
The experiment procedure strictly abided with the National Advisory Committee for
Laboratory Animal Research Guidelines and General Laboratory Safety Procedure of
National University of Singapore.

An implant of 13mm in length and 4mm in diameter (Lifecore� Biomedical, Inc., MN,
USA) is used in this study. A 6� 14mm implant socket is prepared by using drills
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according to the actual surgery protocol suggested by the manufacturer. As presently
defined, the mechanism of osseointegration is a very high rate of living bone modelling and
remodelling within about 1mm of the implant surface [23–25]. To simulate the biologic
change of the interfacial tissue during the osseointegration process, the drill hole is filled
with self-curing resin. Within this model, a layer of 1mm thick implant–bone interfacial
tissue is thus created. The implant is assumed to be inserted into the centre of the drill
hole. An aluminium rod (SmartPegTM, Osstell AB, Sweden) is screwed onto the implant.
A RFA device (Osstell MentorTM, Osstell AB, Sweden) is used to measure vibration
responses of the structure as shown in Figure 1. The aluminium rod is excited by an
electromagnetic pulse from the measurement probe. The pulse scale is from 854 to 9888Hz.

2.2. FEA modelling

ANSYS 6.1 (ANSYS Inc., Canonsburg, PA, USA) is used to generate the three-
dimensional (3-D) FEA model (Figure 2). The interfaces between the cortical and
cancellous bone, interfacial tissue (resin) and the bones, interfacial tissue and implant,
implant and rod, are assumed to be perfectly bonded. The model is finely meshed with
10-node tetrahedral solid elements. This FEA model is constrained in all three degrees
of freedom at each of the nodes located at the external bone surfaces same as the ones
in the experimental model. Using traditional mechanical tensile test, the mechanical
properties of the bovine rib and the cured resin are obtained. Table 1 lists all of the
material properties used in this FEA modelling [10,12,26].

Figure 1. Experimental measurement set-up for dental implant–bovine bone structure. The rib bone
with a dental implant is inserted into a resin block. An aluminium rod is screwed into the implant
and excited by an electromagnetic pulse from the measurement probe.
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(a) (b)
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Figure 2. (a) Overall 3-D FEM model of a dental implant–bone structure; (b) sectional view of the
interface area.

Table 1. Material properties of dental implant–bone structure used in the
FEA model.

Material
Young’s

modulus (MPa)
Poisson’s
ratio (v)

Density
(g cm�3)

Cancellous bone 23,162 0.37 1.86
Cortical bone 823.45 0.31 0.71
Titanium implant 144,000 0.37 4.5
Interface E (variable) 0.32 1.06
Aluminum rod 70,500 0.35 2.78
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Harmonic response analysis is used to determine the vibration response of the implant-
bone structure. Loading is simulated by applying a harmonic force of 1N horizontally at
a node on the top of the implant (node 779, Figure 2) in x-direction. The sweep frequency
scale is same as the experimental device, i.e. from 854 to 9888Hz. Figure 3 shows that
the FEA results have a good agreement with the experimental measurements within the
frequency range of 854–3500Hz.

The x-component displacement values are used as the inputs for training an NN
model. The Young’s modulus of the interface is the output of the NN model. The other
elastic constants of bones are fixed as constants. After the NN is trained, it will produce
this Young’s modulus as an output of the NN when an input of displacement response of
a dental implant–bone system is provided.

2.3. Inverse identification of Young’s modulus of implant–bone interface

In this study, the NN model contains a set of neurons arranged into four layers.
Two hidden layers [27] are used to connect the input and output neurons. The bone
displacement responses as the inputs are fed into the input layer and are multiplied by
interconnection weights as they are passed from the input layer to the first hidden layer.
Within the first hidden layer, the interconnection weights are summed, and then processed
by a non-linear hyperbolic function. As the processed data leaves the first hidden layer,
again it is multiplied by interconnection weights, then summed and processed by the
second hidden layer. Finally, the data is multiplied by interconnection weights then

Figure 3. Comparison of experimental measurement and FEA solutions (Eactual¼ 2.94� 106 (MPa)).
It is shown that the FEA results have a good agreement with the experimental measurements within
the frequency range of 854–3500Hz.
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processed one last time within the output layer to produce the bone Young’s moduli

as the outputs. In this NN model, the neuron numbers of the input, output, first

and second hidden layers are 4, 16, 8 and 1, respectively. Mathematically, the NN

model represents a non-linear mapping between inputs X ¼ fxi, i ¼ 1, . . . ,N g and outputs

Y ¼ fyi, i ¼ 1, . . . ,M g via the following equation:

Y ¼ gðW,X Þ ð1Þ

where W ¼ fwk
ij, i ¼ 1, . . . ,Ni, j ¼ 1, . . . ,Nj; k ¼ 1, 2, 3g is a matrix of weights correspond-

ing to the connections between the layers, and Ni and Nj are the numbers of neurons for

the i-th and j-th layers, respectively. The training process is actually to adjust the matrix

of W [28,29]. Once trained, the NN model thus creates the connections of the involved

parameters and can be used to on-line determination. The actual physical model can

be avoided and the efficiency will be very high. The NN is trained with a modified

back-propagation training algorithm [14].
The NN model is trained using a set of initial training data of sets of Young’s moduli

as the outputs and their corresponding displacement responses as the inputs. In order to

produce the inputs, which should sensitively reflect the change of the interface Young’s

modulus, the sensitive region is therefore first determined. Effects on displacement

responses with respect to Young’s modulus E of interfacial tissue are displayed in Figure 4.

It is shown that the response is quite sensitive to E. Displacement responses at four

frequencies of f1¼ 2929.1Hz, f2¼ 3050.4Hz, f3¼ 3173.8Hz, f4¼ 3296.2Hz and f5¼

3416.9 are selected as inputs of our NN model. The NN model is then trained using a set

of training samples.

Figure 4. Effect of Young’s modulus of interface resin E on displacement responses. It is shown that
the responses are very sensitive to E (MPa).
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The initial training samples should cover well the possible range of the Young’s
modulus of the implant-bone interfacial tissue. However, it is impossible to generate
all the combinations of Young’s modulus, and hence a good cross-section of possible

combinations is required. In this article, a method combining the orthogonal array with
random selection for generating training samples is adopted [30]. Assuming that there is
no interaction among the q parameters to be identified, the number of samples required
based on the orthogonal array for q parameters with p levels is q(p� 1)þ 1. For the current
problem, search limits of �50% from the original values of the Young’s modulus are used.
To determine the initial training samples, the search range is divided evenly into six levels

for the Young’s modulus E. Therefore, the number of samples required based on the
orthogonal array method is 6. In addition, another 10 samples are created randomly
to further reinforce the sample set. Excluding the original Young’s modulus, the training
samples consist of 16 sets of data.

To verify our NN-FEA inverse procedure, both actual experimentally measured
displacements and simulated ‘measured’ displacements are used. In order to simulate the
measurement noise, noise-contaminated displacement responses are also used for the
identification of the moduli. A Gauss noise with mean 0 and deviation � is directly added
to the computer-generated displacement responses to simulate noise contamination [31],

where � is defined as

� ¼ 0:01
1

N

XN
i¼1

u m
xi

 !2
2
4

3
5

1
2

ð2Þ

in which u m
xi
is the calculated displacement at the i-th sample point.

The NN model requires the normalization of the input and output data. Practical
experience indicates that it is better to normalize the input patterns as well as output
patterns in the range between 0.1 and 0.9 [32]. The following formulas are used for
normalization.

Xnormalized ¼
Xi � Ximin þ "1

Ximax � Ximin þ "2
, "1 ¼

Ximax � Ximin

8
, "2 ¼

Ximax � Ximin

4
ð3Þ

where Ximin and Ximax are, respectively, the minimal and maximal values of the i-th input

Xi in the sample data set. "1 and "2 are the scaling factors to ensure that the normalized
values are not close to 0 or 1. The outputs are also normalized in exactly the same way.
After the NN model is trained, the Young’s modulus is identified using the trained NN
model by feeding in the displacement values.

3. Results and discussion

To examine the stability of the proposed NN-FEA approach, inverse analyses are now
performed using the trained NN model. In vitro experimental measurements at actual
Young’s modulus Eactual and fi, i¼ 1, . . . , 5 are input into the trained NN model, and
the required output is inversely identified. The identified Young’s modulus of interfacial
tissue is given in Table 2.
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Two additional cases of inverse analyses are also conducted in which the noise-free
and 5% noise-contaminated simulated measurements are used instead of actual experi-
mental measurements. Tables 3 and 4 give estimated Young’s moduli of interfacial tissues
for two ‘true’ Young’s moduli of Etrue1 and Etrue2. The proposed NN-FEA produces
estimated results with maximum deviations of less than 1% for noise free case, and less
that 5% for both 5% noise-contaminated cases and in vitro experiment case. The results
interpret that our inverse procedure is very stable and reliable within the search range
of �50% off the ‘true’ Young’s modulus, and this search range is sufficient in practical
applications.

Several assumptions are made in the development of the models in the present study.
The dental implant–bone interfaces are assumed to be perfectly bonded. This approach

Table 3. Identified Young’s modulus of the interface using the NN-FEA and simulated
measurements with 0 and 5% noise contamination for Etrue1.

Original Young’s modulus Etrue1¼ 1.5� 106 (MPa)

Search range �50%

NN Noise free Noise added (5%)

Identified results Deviation Identified results Deviation

1.49� 106 (MPa) 0.67% 1.45� 106 (MPa) 3.33%

Table 4. Identified Young’s modulus of the interface using the NN-FEA and simulated
measurements with 0 and 5% noise contamination for Etrue2.

Original Young’s modulus Etrue2¼ 2.5� 106 (MPa)

Search range �50%

NN Noise free Noise added (5%)

Identified Results Deviation Identified results Deviation

2.495� 106 (MPa) 0.2% 2.56� 106 (MPa) �2.4%

Table 2. Identified Young’s modulus of the dental implant–bone interface
using the NN-FEA and experimental measurements.

Original Young’s modulus Eactual¼ 2.94� 106 (MPa)

Search range �50%

NN Identified results Deviation

2.87� 106 (MPa) 2.38%

1080 B. Deng et al.
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attempts to simulate the 100% osseointegration between the implant and bone. However,
it cannot describe exactly the structure and property of interfacial bone in clinical
situations [33]. For instance, the different osseointegration degrees and patterns occur
during the bone healing process. Non-destructive assessments of the dental implant
interfacial tissue should be further developed to provide fundamental information
about its structure and property at the level of detailed needed for biomechanical
predictions. For this purpose, 3-D implant–bone FEA models at the microstructural level
are required to be able to deal with anisotropic materials and simulate the biomechanical
responses of implant–bone interfacial tissues during different osseointegration stages.
Further enhancement of the NN model is also needed to accommodate the increase
in input and output data.

The developed inverse techniques can be further applied clinically to obtain the required
data for assessment of dental integrity of a patient and/or quality of a dental implant, which
are extremely useful for the dentist to make a clinic decision based on sound scientific
analyses.

4. Conclusion

The Young’s modulus of the interfacial tissue around a dental implant is inversely
identified in this study. The results of this study suggest that the computational inverse
technique using a progressive NN model is applicable and accurately identified the
Young’s modulus by feeding in real displacement responses of the implant–bone structure.
In addition, the NN model is stable to accommodate the presence of noise in the measured
data, which is very critical to its practical application in clinical settings. It is concluded
that the developed inverse procedure combining the 3-D FEA with the NN model provides
an opportunity and means to identify multiple parameters in a complex dental implant–
bone structure.
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